PHD2 Best Practices

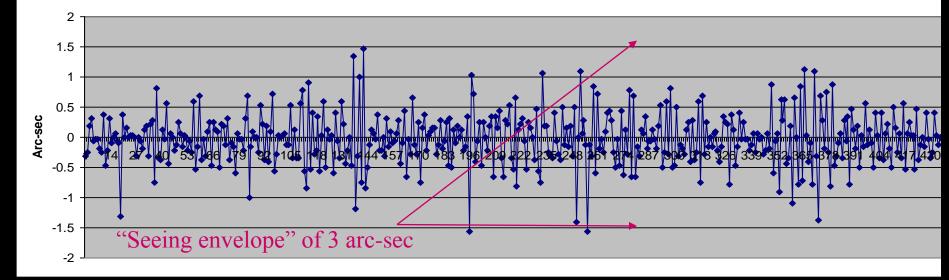
Bruce Waddington Andy Galasso December 2019

Getting Started

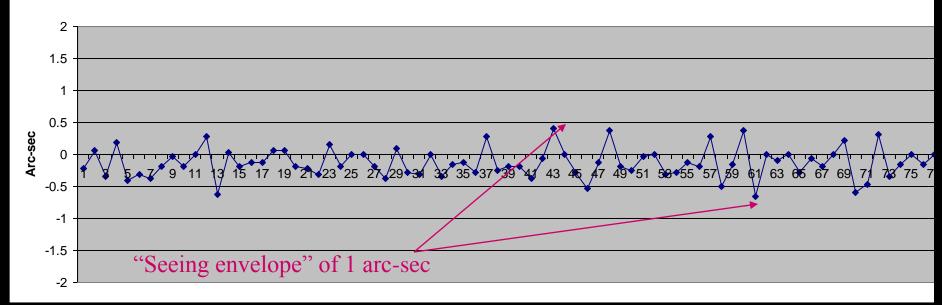
- Use the new-profile wizard to specify equipment connections
- Enter correct values for camera pixel size *guide scope* focal length, and binning
- Build and use a dark library for the camera

 the wizard will help you do that
- Use a separate profile for each gear combination

Gear Connections


- Use ASCOM or INDI* pulse-guiding instead of ST-4 guiding if mount supports it
- Get the benefits of one less cable and better logging/diagnostics
- If you do use ST-4 guiding, use ASCOM for the PHD2 'aux mount' connection

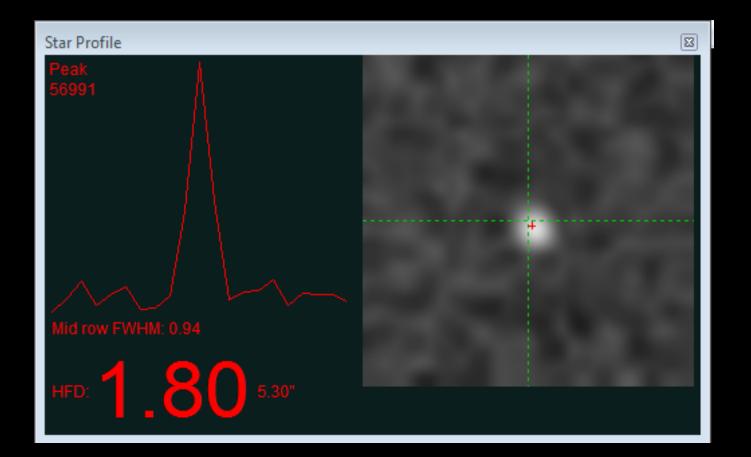
*ASCOM and INDI provide similar functionality in PHD2; INDI users can substitute INDI for ASCOM throughout this presentation



- For mounts with good RA tracking, aim for guide exposure times in the 2-4 sec range
 - You can't correct for seeing ignore the siren's song of rapid, short exposures
 - Longer exposures average out seeing and make guiding easier
- Mounts with higher RA tracking error require shorter exposures, 1.0 1.5s
 - Keep the exposure short enough to react to the steepest tracking error but not below 1 sec

1 sec guide exposures

4 sec guide exposures


Looping

- Choose a suitable guide star
 - Let PHD2 auto-select the star

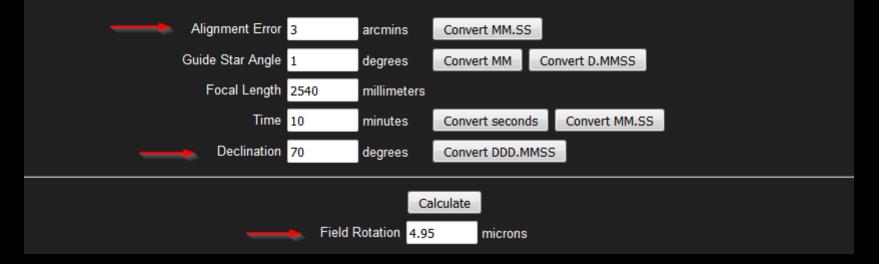
- Based on multi-factor analysis of available stars
- Nearly always better than you can do manually
- Increase the guide exposure if necessary
- Use the star-profile tool to confirm focus and shape – you want a pointed top
- Use min-HFD and star-saturation detection controls to tune auto star selection

Star-Profile Tool

Calibrating

- Get a good calibration, then re-use it
 - Within +/- 20 degrees of celestial equator (Dec=0)
 - Within an hour of celestial meridian
 - For mounts with Dec backlash, manually move mount north immediately before calibration
 - Don't ignore calibration alerts use the help file to fix or work around mount problems

Calibration


- Re-do calibration only when necessary
 - Equipment change in existing profile (don't do this use a separate profile instead)
 - Change in mount guide speed settings
 - Rotation of guide camera or OAG by more than a few degrees
- Note: recalibration is still required if no ASCOM 'mount' or 'aux-mount' connection is used

Polar Alignment

- Get a good polar alignment, but don't be obsessive-compulsive about it
 - Use one of the drift alignment tools to get within a few arc-minutes of the pole
 - Misalignment of as much as 10 arc-minutes can help mounts with lots of Dec backlash
 - Check for field rotation when imaging near the pole
 - Online field rotation calculator

Polar Alignment Calculator

Calculate Field Rotation for Polar Alignment Error

Field rotation of < 1 px for common set-ups

http://celestialwonders.com/tools/rotationMaxErrorCalc.html

Scenario 1: Portable Setup

- Attach guide camera in same position painter's tape marks will work
- Position mount in same location using marks on ground
- Reload profile with existing calibration
- Polar align when stars are first visible
- Start guiding

Scenario 2: Permanent Setup

- Reload profile with existing calibration
- Start guiding!

Mount Settings

- Use periodic error correction if the mount supports it
 - Use an app, don't try to do it manually
 - Run through several worm cycles to get a more accurate correction curve
- Use guide speeds in the range of 0.5x 1.0x sidereal

Mount Settings

• Don't use backlash settings in the mount (*aka* backlash compensation / anti-backlash / TVC)

If using EQMOD EQASCOM, follow instructions here: <u>https://github.com/OpenPHDGuiding/phd2/</u> <u>wiki/EQASCOM-Settings</u>

Deal with Backlash

- Less-expensive mounts often have substantial Dec backlash
 - Adjust the gear mesh if you can
 - De-tune polar alignment by up to 10 arc-min
 - Use uni-directional Dec guiding if you can't improve the mount
- Ignore RA backlash it's irrelevant if guide speed is <= 1x sidereal

Use the Guiding Assistant

- When setting up your equipment for the first time in PHD2, always run the Guiding Assistant once to establish effective initial min-move, backlash compensation, and guide camera exposure settings
- Run again later as needed to
 - Better understand your mount's behavior
 - Get a sense of your seeing conditions
 - Get updated recommendations for settings

Use the Guiding Assistant

• Pay attention to the GA recommendations

Recommendations	
Try setting RA min-move to 0.35	Apply
Try setting Dec min-move to 0.30	Apply
Try setting a Dec backlash value of 680 ms	Apply

GA Example

Guide Parameter Adjustments

- Always start with default settings use 'Reset' buttons if you're not sure
- Be conservative with adjustments
- Keep min-moves larger than the typical seeing fluctuations
 - Dec guiding should be conservative (larger min-move)
 - RA guiding can be a bit more aggressive (smaller minmove) to correct periodic error
- Remember that under-correction is better than over-correction, especially for Dec

Remember What Guiding <u>Can</u> Handle

- "Slow and steady" errors
 - Tracking rate errors
 - Atmospheric refraction
 - Some kinds of flexure (not differential)
 - Residual periodic error
 - Drift from polar alignment error

And What It Can't...

- High-frequency, random star movement
 - Most seeing effects
 - Poorly-behaved hardware
 - Sudden shifts/deflections
 - Vibration
- Differential flexure
- Large Dec backlash
- Field rotation

What If You Have Basic Problems

- Use the help resources
 - Interactive Help in PHD2, including index
 - HTML and PDF versions here:
 <u>http://openphdguiding.org/documentation/</u>
 - Basic questions are quite likely answered in the Help content

What If You Have Basic Problems

- Ask for help on the PHD2 forum
 - Be specific about what you did and what you saw
 - Submit both the guide and debug log files (yes, you have them)
 - Use the Upload Logs wizard in PHD2 to select and upload log files

What If the Guiding Looks Bad

- Be sure to look at the numbers
 - Reset to the default guiding parameters
 - Use the PHD2 LogViewer tool to analyze 15+ min guiding sessions <u>http://adgsoftware.com/phd2utils/</u>
 - Judge performance in arc-sec, not pixels
 - Don't just react to a "spiky" graph
 - Try initially for guiding RMS of around 1 arc-sec
 - Distinguish between unusual incidents and longer-term performance

What If the Guiding Looks Bad

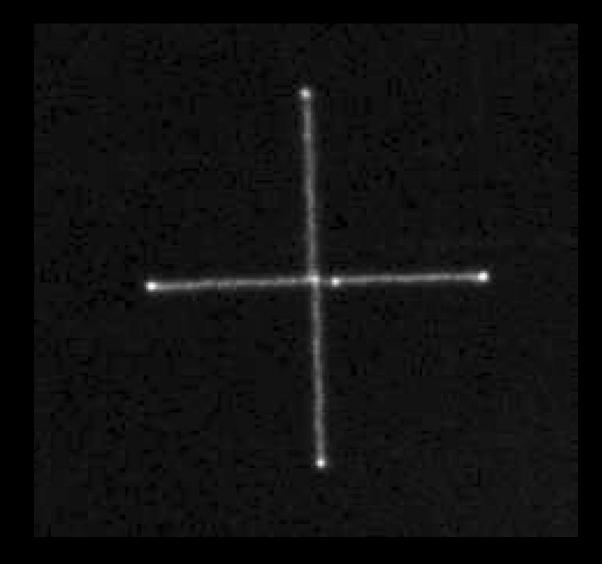
- Read the log analysis tutorial: <u>http://openphdguiding.org/tutorial-</u> <u>analyzing-phd2-guiding-results/</u>
- Ask for help on the PHD2 forum always with a guide log

Improving the Guiding Performance

- Be systematic and methodical when trying to improve performance
 - Don't thrash the guiding parameters!
 - Experiment only on a night of average to good seeing for your site and not when you're trying to image
 - Do testing high in the sky and near Dec = 0
 - Look at long guiding intervals don't get fooled by randomness
 - Make single, small adjustments for a specific purpose then look at the results

Judging the Results

- Let your main-camera images be the final word on guiding performance
 - Look at star size and elongation compared to 5-10 sec unguided exposures
 - Look for evidence of differential flexure in long exposures (good guiding but elongated stars)
 - Guiding may not be your limiting factor it only has to be good enough

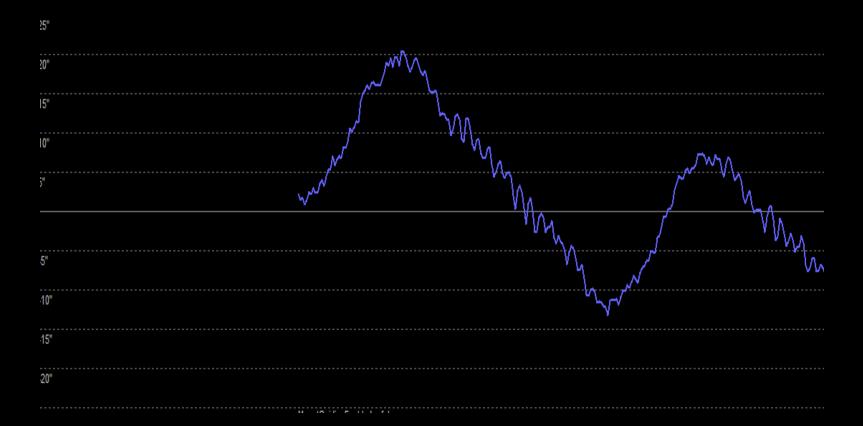

Extra Credit: Dealing with a Cranky Mount **Repeated Calibration Alerts**

- Check the help file Tools/Calibration Details
- Dec backlash is a common problem
 - Alerts happen frequently but not always
 - Move the mount north at guide speed for 20 seconds before starting the calibration
 - De-tune polar alignment to minimize direction reversals

Look at the Mount's Behavior

- Guiding software can't tame a bad mount
- Get over the "I don't really want to know" feeling
- Try the star-cross test for the most basic form of testing

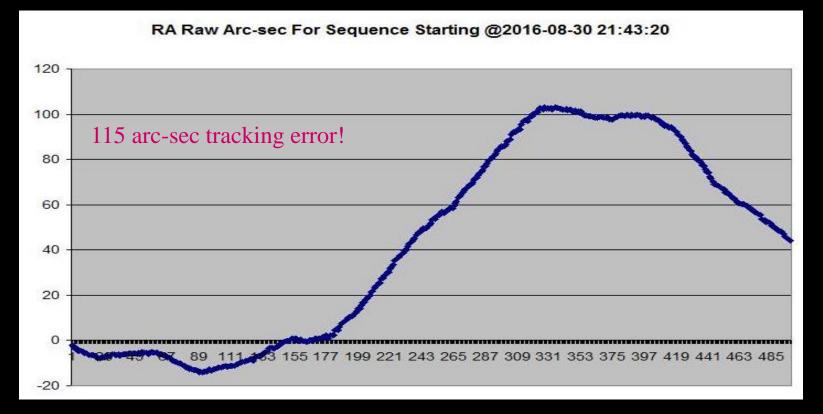
Star-Cross Test

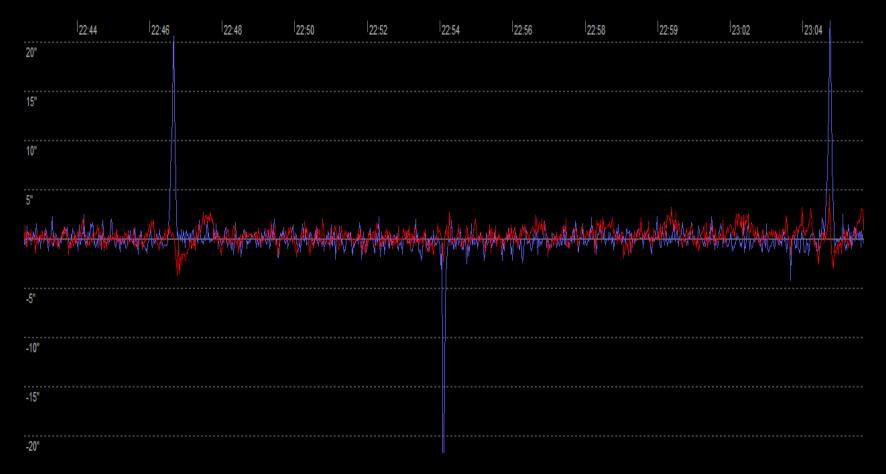

Start 45-sec exposure At guide speed: 5 sec west 10 sec east 5 sec west 5 sec north 10 sec south 5 sec north

Look at the Mount's Behavior


- Disable guiding and watch what happens for 10-15 minutes
- Use the Guiding Assistant
 - Declination backlash
 - RA and Dec drift and peak-to-peak ranges
 - Periodic error
 - Polar alignment error

Guiding Assistant Results

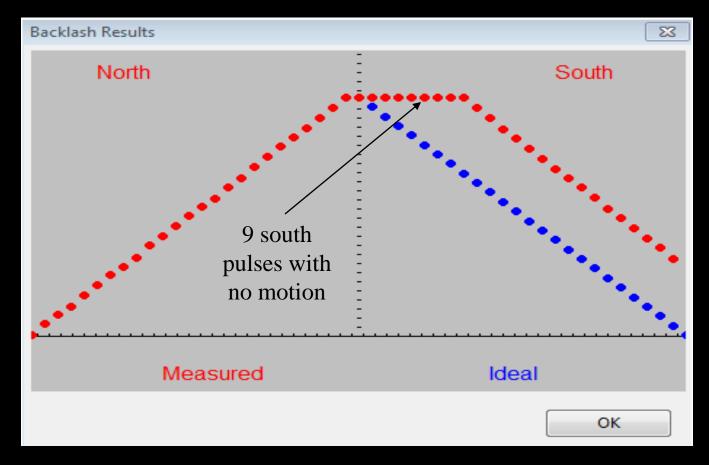

Other Star Motion	
Right ascension, Peak	3.39 px (1.43 arc-sec)
Declination, Peak	2.51 px (1.05 arc-sec)
Right ascension, Peak-Peak	13.98 px (5.89 arc-sec)
Right ascension Drift Rate	0.78 px/min (0.33 arc-sec/min)
Right ascension Max Drift Rate	0.40 px/sec (0.17 arc-sec/sec)
Drift-limiting exposure	1.0 s
Declination Drift Rate	-2.42 px/min (-1.02 arc-sec/min)
Declination Backlash	
Polar Alignment Error	4.3 arc-min


Mount RA tracking with No PEC

Mount RA tracking with PEC Active

Huge RA Tracking Error

Spikes in RA Tracking - Corrected with re-mesh and clean-up



Dec and RA Drift Rates – Polar alignment and some flexure

Measuring Dec Backlash With The Guiding Assistant

Right ascension, Peak	0.40 px (1.32 arc-sec)
Declination, Peak	0.27 px (0.89 arc-sec)
Right ascension, Peak-Peak	0.40 px (1.32 arc-sec)
Right ascension Drift Rate	2.51 px/min (8.27 arc-sec/min)
Right ascension Max Drift Rate	0.04 px/sec (0.12 arc-sec/sec)
Drift-limiting exposure	2.9 s
Declination Drift Rate	-0.15 px/min (-0.49 arc-sec/min)
Declination Backlash	1.3 px (289 ms)
Polar Alignment Error	1.9 arc-min

GA Backlash Graph

Example of large Dec backlash

Perspective

Don't go crazy about this stuff – it's a hobby!